(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(x), s(y)) →+ minus(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, x) → 0'
minus(s(x), s(y)) → minus(x, y)
minus(0', x) → 0'
minus(x, 0') → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0', s(y)) → 0'
f(x, 0', b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0')), b), b)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(x, x) → 0'
minus(s(x), s(y)) → minus(x, y)
minus(0', x) → 0'
minus(x, 0') → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0', s(y)) → 0'
f(x, 0', b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0')), b), b)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
div,
fThey will be analysed ascendingly in the following order:
minus < div
minus < f
div < f
(8) Obligation:
TRS:
Rules:
minus(
x,
x) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xdiv(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
0',
s(
y)) →
0'f(
x,
0',
b) →
xf(
x,
s(
y),
b) →
div(
f(
x,
minus(
s(
y),
s(
0')),
b),
b)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
minus, div, f
They will be analysed ascendingly in the following order:
minus < div
minus < f
div < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
minus(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
x,
x) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xdiv(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
0',
s(
y)) →
0'f(
x,
0',
b) →
xf(
x,
s(
y),
b) →
div(
f(
x,
minus(
s(
y),
s(
0')),
b),
b)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
div, f
They will be analysed ascendingly in the following order:
div < f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol div.
(13) Obligation:
TRS:
Rules:
minus(
x,
x) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xdiv(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
0',
s(
y)) →
0'f(
x,
0',
b) →
xf(
x,
s(
y),
b) →
div(
f(
x,
minus(
s(
y),
s(
0')),
b),
b)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(15) Obligation:
TRS:
Rules:
minus(
x,
x) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xdiv(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
0',
s(
y)) →
0'f(
x,
0',
b) →
xf(
x,
s(
y),
b) →
div(
f(
x,
minus(
s(
y),
s(
0')),
b),
b)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
minus(
x,
x) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xdiv(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
0',
s(
y)) →
0'f(
x,
0',
b) →
xf(
x,
s(
y),
b) →
div(
f(
x,
minus(
s(
y),
s(
0')),
b),
b)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)